PAL Session Stewart 4.1, 4.2 Spring 2010

4.1 Key Terms/Concepts: Define if not listed e Fermat’s Theorem p. 273 If f has a local maxi-
mum or minimum at a point ¢ and the derivative
exists at this point, then f'(c) = 0.

e Absolute Maximum/Minimum

* Local Maximum/Minimum e The Closed Interval Method p. 275 Fill in the
e Critical Number/Point steps:
e The Extreme Value Theorem p. 272 - If f is con- 5

tinuous on a closed interval [a,b], then f has a
absolute maximum and minimum.

Exercise 9 p. 277 Sketch the graph of f that is continuous on [1,5] and has an absolute maximum at 5, an
absolute minimum at 2, a local maximum at 3, and local minima at 2 and 4.

Exercise 28 p. 277 Sketch the graph of f by hand and use your sketch to find the absolute and local maxima and
minima.

) = 4—x* if —2<x<0
| 2x—1 if0<x<2

Exercise 33 p. 277 Find the critical numbers of the following function.

F(x) = x° +3x% — 24x

Exercise 51 p. 179 Find the absolute maximum and minimum values of the function on the given interval.

flx) =x* =247 43, [-2,3]
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4.2 Key Terms/Concepts: tinuous on [a, b] and differentiable on (a,b), then
there is a number c in (a,b) such that

e Rolle’s Theorem p. 280 - If f is continuous on

a,b|, differentiable on (a,b) and f(a) = £(b), oy f(b)—fla) o
t[hen] there is a number( c 2n (a,b)( zuch Ehe)lt )= b—a = fb)=fla)=fc)(b=a)
f(c)=0.
e Thoerem p. 284 - If f'(x) = O for all x in an in-
e The Mean Value Theorem p. 282 - If f is con- terval (a,b), then f is constant on (a,b)

Exercise 4 p. 285 Verity that the function satisfies the three hypotheses of Rolle’s Theorem on the given
interval. Find all numbers c that satisfy the conclusion of Rolle’s Theorem.

f(x)=cos2x, [r/8,7m/8]

Exercise 16 p. 285 Let f(x) =2 —|2x— 1|. Show that there is no value of ¢ such that f(3) — f(0) = f(¢)(3 —0).
Why does this not contradict the Mean Value Theorem?

Exercise 18 p. 285 Show that the equation 2x — 1 — sinx = 0 has exactly one real root.

Exercise 25 p. 286 Does there exist a function f such that f(0) = —1, f(2) =4, and f'(x) < 2 for all x?
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4.4 Key Terms/Concepts:
L’Hopital’s Rule:
If limf(x)=0=Ilimg(x) OR

lim f (x) = o0 = limg(x) AND

lim F'(x) exists, then lim f(x) =lim ' (x)

e g'(x) e g(x) e g'(x)

Evaluate the following limits:
Exercise 1

. e -1
lim—
x-0 §ln 3X

Exercise 2
X =32 -9x+22
lim 3 >
x->2 X° —8X° +21x-18

Exercise 3 (Stewart #57 p. 305)

lim (1+§+£2j
X—>+00 X X

Exercise 4
x> +3x—5-5tan (7;)()

lim—
x>2  sin(Xx—2) cos(Xx—2)

4.4 Comprehension Check

*How do we know a function has a limit of
infinity at a point?

*What does it mean for a limit to exist?

*Determinate/Indeterminate Form?? What are

they?

Spring 2010
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4.3/4.5 Key Terms/Concepts: 3. Determine Symmetry (if any)

Increasing/decreasing 4. Find any Asymptotes

First Derivative Test 5. Find the intervals of increase/decrease

Concave Up/Concave Down 6. Determine Local Max/Min Values

Second Derivative Test 7. Find Points of Inflection and intervals of
Concavity

Steps to Curve Sketching: 8. Sketch the curve

1. Determine the Domain
2. Locate ALL Intercepts

Exercise #12 p 295
Find (a) the intervals of increase/decrease for f, (b) local max/min values of f, (c) intervals of concavity
and inflection points.

F(x) = :

X
x> +3

Exercise #28 p. 296
Sketch the function such that f'(x) >0 if |x|<2, f'(X)<0if |x|>2, f'(2)=0, limf(x)=1,

f(—=x)=—F(x), T"(X)<0if 0<x<3, f"(X)>0ifx>3,x<0

Exercise #18 p. 315

Use the above steps to sketch the graph of y =—
X
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4.7 Key Terms/Concepts: 4. Express the needed quantity in terms of
Optimization Problem Solving Steps something else from Step 3
1. Understand the Problem Find relationships among other variables
2. Draw a Diagram 6. Find the absolute min or max.
3. Introduce Notation

o

Exercise#6 p. 328
Find the dimensions of a rectangle whose area is 1000 m? and whose perimeter is small as possible.

Exercise#12 p. 328
A box with a square base and open top must have a volume of 32,000 cm®. Find the dimensions of the
box that minimize the amount of material used.

Exercise #18 p. 328
Find the point on theline 6x+ y =9 that is closest to the point (-3,1).

Exercise #36 p. 329
A fence 8ft. tall runs parallel to atall building at a distance of 4ft. from the building. What is the length
of the shortest ladder that will reach from the ground over the fence to the wall of the building?
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4.9 Key Terms/Concepts:
Antiderivative
General form of an Antiderivative

Exercise#4 p 345
Find the general antiderivative of f(x)=8x"—-3x°+12x

2

Exercise #12 p. 345

5-4x3+2x°

Find the general antiderivative of f(x) = -
X

Exer cise #30 p. 345
Findfif f'(xX)=8x+12x+3, f(1)=6

Exercise #44 p. 345
Find fif f"(x)=2€ +3sint, f'(0)=0, f(x)=0

Exercise #74 p. 346
A car braked with a constant deceleration of 16 ft / s?, producing skid marks measuring 200 ft before
coming to a stop. How fast was the car traveling when the brakes were first applied?
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